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ABSTRACT

It is shown that the Ritz projection onto spaces of piecewise linear

finite elements is bounded in the Sobolev space, W , for 2 < p < -. This
P

01 2
implies that for functions in W (r W the error in approximation behavesp p

12
like 0(h) in W , for 2 < p < a, and like 0(h2 ) in LP, for

2 < p < -. In all these cases the additional logarithmic factor previously

included in error estimates for linear finite elements does not occur.
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SIGNIFICANCE AND EXPLANATION

This paper concerns error estimates for methods of approximating the

solution of a partial differential equation. The method in question is the

so-called "finite element method,"yhich was developed by structural engineers

and is now widely used in all branches of engineering. The paper refines

previously derived estimates of the error in "maximum norm," i.e. the maximum

error (as opposed to an average error). The paper settles certain technical

questions as to the rate of convergence of the finite element method in this

norm.
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SOME OPTIMAL ERROR ESTIMATES FOR PIECEWISE
LINEAR FINITE ELEMENT APPROXIMATIONS

Rolf Rannacher* and Ridgway Scott**

I. Introduction and Results.
Let Q be a convex polygonal domain in 392 , and let h - {K}, 0 < h < h0

Let 0< h < < 1,

be finite triangulations of n such that the usual regularity condition is satisfied:

(T) The triangles Ke h only meet in entire common sides or in vertices. Each

triangle K e wh contains a circle of radius c1 h and is contained in a circle c 2h,

where the constants clc 2 do not depend on K or h.

00

Corresponding to l h' we define the finite dimensional subspace Sh C W,,b

Sh -v e l vh is linear On each K e h,

and the Ritz projection Rh  2  Sh by

(U.1) (VR u, V h) = (Vu, Vh), V h  e Sh .

Here L and W, 1 < p < m e 3, are the Lebesgue and Sobolev spaces onp p -

Q provided with the usual norms 'I1- and l -I , respectively. WI in the subspace
p m~p p

of those functions in W which vanish on the boundary in the generalized sense. Thep
inner product of L2 is denoted by ('). Finally, by c we mean a generic positive

constant which may vary with the context but is always independent of h.

Under assumption (T), we have the well known mean-square-error estimates

(1.2) lu - Rhullk, 2 < ch2-kllull 2,2, k = 0,1

and the uniform-error estimates (see [4] , [81, (6] , [1], t7])
c2- n1 n ul " k = 0,1

(1.3) Ilu - RhUlk, _ chhln 2 lull , ,

From (1.2) and (1.3) one may conclude by an interpolation argument that for 2 < p <

the L error behaves like (see [8])
p

(1.4) Iu - R ch2 (in 1 )- 2/pHull p

hu1Ph 2,p
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It has been considered as a challenge among the specialists to remove the additional

logarithm in (1.3) and (1.4). This, in particular, since one can show that for higher

than second order finite elements these estimates hold without the logaritm (see [5),

2(81). Also, for any function u e ;1  W p, 1 < p ._ -, the natural piecewise linear
p

interpolant Zhu c Sh is well defined and satisfies

(1.5) lu - I hullkP.- ch2-k1u1 2 , k - 0.1

For the case of linear finite elements Fried (2] has recently published an example based

on radial symmetry which indicates that (in two and three dimensions) at Least the

pointvise estimate

(1.6) Ilu - RulI< ch2 ln Ilu112,.

may be of optimal order. However, this leaves the question open whether the Lp

estimate (1.4) is optimal. In the present paper we shall give an answer to this ques-

tion for the model situation considered here which is based on the following stability

result:

Theorem. Under assumption (T) the Ritz projection R is stable in ;l for
hp -

2 ip<~ namely

(1.7) IIRuill,p<_. c1ulll,p •

The proof of the theorem will be given in the next two sections. One of its consequences

is the following

Corollary. Under assumption (T), for any function u e V W there holdsp

(1 .8 ) Ilu - R u 1 ,p - . 112  , 2 p - , 1

(1.9) flu R RnuIlp c pch2 1u!2,pr 2 < p < -

proof. we apply (1.7) for u - Ihu and observe that RN * id on Sh  to obtain

II hu - Ihulll,p <. cllu - 'hulllP , 2 < p

Then, the approximation estimate (1.5) implies (1.8).

i- prove (1.9), we use a duality argument. Let p e 12,-), so that

q n p/(p-l) e (1,21. On the convex polygonal domain n, the Laplacian is a

-2-
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homeomorphis from ) w2 onto Lq, 1 < q 2 (see (31). Hence there is a
q qq

v E ;l ) satisfying
q q

-Av- sgn(u - Rhu)lu- Rul p 'I in ,

and

(1.10) 11v112,q <_ cllvq - n - Rhul 
-1

Using now (1.1), Holder's inequality,(l.5), (1.8), and (1.10), we find

flu - Pnullp = (V(u - Phu), V(v - Ihv))

_<u I1- ,huu111, 11v - Ihv 11l,q

(l~ll .< til- Rhulll'p~hlll,

L~. h2IUIIpIIII2q< ch 2 11u 112,p 11v 112,q

< ch 2 11 u 1,1IN - Rul -  q.e.d.

We remark on some extensions of our results. The proof of the theorem and to a

large extent also that of its corollary make use of the fact that the Laplacian con-

sidered as a mapping

(.12) A : W 2 - LP p p

is a homeomorphism for p e (1,2 + a], where a is some arbitrarily small but

2
positive number. This is certainly true on a domain with smooth boundary, say 30 e C

for all a > 0, and it is known also for convex polygonal domains (see [31) where a

depends on the size of the maximum inner angle, w < -. Our results extend to more

general second-order elliptic operators as long as the corresponding mapping (1.12)

is a homecmorphism. Ir the case of a curved boundary the proofs become more involved

due to the approximation of 0 by polygonal domains %. In the case that 3Q is

smooth one can show that for all p 9 (1,-] the following refined estimate holds:

(1.3) II% -!lll,p _< cj JIujjl,p,,I - hl1-I'Plll.ll p "\% ) -

From that estimate one can aqain draw the conclusions (1.8) ar,! (1.9), now valid for

all p e (1,-] and p e (1,-), respectively. The results for 1 < p < 2 are proved

-3-



via a duality argument that makes use of elliptic regularity results that are not

generally valid for non-smooth boundaries.

2. Proof of the Theorem.

Notation and techniques are similar to those used in [1). However, the key differ-

,.nce is in the type of Green's function employed. The basic technique used in several
h

papers is to reduce to the problem of estimating the Galerkin error g - g in approx-

imating the solution of

-fig- 6 in fl

where S is the Dirac 6-function or some approximation to it. The difficulty is that,
h

with piecewise linear approximation, the error g - g contains a logarithmic factor.

For example, it was noted in 181 that 0 < cl h- (In h-I )-ig-ghI < c 2 as
WI.

h - 0. The reason is that the smoothness of g is such that piecewise linears fail

to afford optimal approximation (whereas higher degree piecewise polynomials would

yield an approximation rate devoid of the logarithmic factor). The remedy here is to

consider instead a "derivative" Green's function, satisfying

-Ag 16- in n

(for each i - 1,2). Now q is more singular, and piecewise linears afford optimal

approximation, albeit at a slower rate. We now turn to the details.

Let u e ;1. 2 < p <, be given. We pick any point z e i contained in the
p -

interior of some triangle Kz e th' and denote by a any of the operators a/axi,

i - 1,2. Because of assumption T) there is a function 8 z e c (K) such that

(2.1) f 6zd, - 1, jvkSz 1 _ ch 2 -k , k - 0,1,... ,

where the constant c does not depend on z or h. Then, by construction,

(2.2) ah(z) ( h ,6 ), V h e Sh

Correspondingly, we define gz I V2  by

(2.3) (Vg ,VO) (6 ,30), V o e .
z z 2

-4-



Clearly, gz is a regularized derivative of the Green's function of the Laplacian on

9. Using this notation, we have

(2.4) aRhu(z) - (VR uVgz ) - (VuV g z )

- (u,6) - (Vu,V(gz -Rgz

We introduce the weight function

(2.5) O(x) = (Ix z 2 + K2 h) , K > 1

where the parameter K will be chosen appropriately large, K > K,> 1, but independent

of hi We note that from now on the generic constant c is also independent of K and

z e Q, and of the parameter a e (0,1] introduced below.

Suppose temporarily that p < -. Applying H61der's inequality to the terms in

(2.4), we obtain for any a e (0,1] that

I(vu,v(g - ) <_ { 2-,Vu Ppd.)l/P( fa 2-d.)2p ({ , - Rg) 12 dx) 1 / 2

< c(a'l h- ) 2p 0-'O2-a IVulPdx)i/P,

where

Kb - max (f 2+a 1 V(g - R W )Idx)" 2

ze U

Furthermore,

I(ae z) < (f IulPdx)'/P Is zIP-1 dx) p

K KZ z

2ch P ( IVulPdx) 1/ p

K
z

We apply the above estimates with (2.4), raise to the p-th power and integrate with

respect to z e U to obtain

-5-



3%5u .< c(h-2 ff IVuIpdx dz)
1/p +

K
z

+ c(Q-lh-0)
2P Uf fc2-a IVujp d x dz/)'

1p

Thus, by interchanging integration, we find

(2.6) IaR.uHp _ cli vulip(I + a-1/2h-a/ 2,M)

where the constant c is obviously independent of p. Estimate (2.6) is also easily

seen to hold for p - - using the above techniques. Now, to prove the assertion of

the theorem, we have to show that

ir2+cs, 2 1/2 q/
(2.7) h - max (fU z IV(g. - Rgz) I ]dx) < ch

zeQ

for a proper choice of a e (0,1].

To prove (2.7), we need some preparations. From now on, we drop the subscript z

and simply write o,g for az ,g z .

The weight function a satisfies
1-Y 1 Kh -k,

(2.8) IVkal < ca < c(h) k - 0,1,2,...

Here Vka denotes the tensor of k-th order derivatives of a. Moreover, for K > K1

sufficiently large, one has that (see [51)

(2.9) max [max o(x)/min a(x)] < c
Ke7rh xeK xeK

holds uniformly for z e p. For any function v e W 2 r( W 2 (K) the natural piece-
Ke ith

wise linear interpolant IhV Sh  is well defined and satisfies

(2.10) ffv(v - Ihv)I[2;K .1 chI lV2vI 2 ;K' Kv eh

Combining (2.10) and (2.9), one easily sees that the following holds:

(2.11) f YBIV(v -hv),
2dx < ch 2 f l  'V2 dx

where the abbreviation used is

dx - I f ... dx

Ke Ih K

-6-



To prove (2.7), we set a +a (g - Phg) and we use (1.1) to obtain

f' a 2+aV(g _ Rhg) 12dx =f V(g _ R~)(I-I~)dx . f A2 +C1(g - Rhg) 2dX

Thus,

(2.12) f 02+,IV(g _ Rhg) 12dx < f 0-2 - IV(* 12dx + c f -'( N 2dx

From (2.11), we get by a simple calculation that

fja 0
2 -atlvg P - I h~ j)2 dx < ch 

2 f a 2+a I[2g12 dx +

+ cKJ
2 (f a2 +tafV(g _ Rhg) 2dx + f' 0n(g _ Rhg)

2dx)

We insert this estimate into (2.12) and find that, for K~ > K2  sufficiently large,

(2.13) f aY2+otV(g _ Rbg)1 2dx < ch 2 f 02 +a IV2g j
2 d. + c f c,(g _ Rhg)2dx.

To handle the second term on the right side of (2.13), we employ a duality argument in

weighted norms. For fixed h, let v e wl be the solution of the auxiliary problem
2

(2.14) -AV - a(g -Rg) in 0

2
Since ;Z is convex, it is guaranteed that v e W 2 Moreover, in Section 3 we shall

show that the following weighted a priori estimate holds for all v e W (Q) such that
2

AV e ;1(2):
2

(2.15) f -2 -a V 2 VI 2 dx < c-l1 (Kh)- 2 f . 2 lIVAI 2d.

Consequently,

(2.16) f a-2 -aV 2v1
2 dx <O-l(Kb) -2 f {07

2+aV(g _ Phg) 12 + a (g -Rhg)
2 }dx

Using (2.14), we have

f (301(g - Rhg)2 dx =f V(g - Rhg).V(v - Ihv)dx

(f"2+oL ,(g _ Rhg) l 2 dx) 11 2 (f (&2 -ofV(v _ Ihv)l 1dx)1/

Then, by (2.11) and (2.16), choosing Kc >- K3  yields

(2.17) f aY0,(g - R.hg) 2 dx <c(cac)- 1 f 02+-i,( -h)2d



we insert (2.17) into (2.13) and choose again Kc > K 4 (a) sufficiently large to obtain

(2.18) jf o2 +a[P(g - Rhg_ )j 2d < ch 2 f 02,, 2gj 2 d.

Thus, we have reduced the proof of (2.7) to an a priori estimate of the form

(2.19) a +IiV 2gI dx < chach

This estimate, however, is an obvious consequence of the a priori estimate

(2.20) f 02cV~,d < c I a2 +,(a6)~2 dx+c-l (h-2fa2a62

which will be proven in Section 3, for 0 < ai < a S sufficiently small.

3. Some Weighted A Priori Estimates.

01 *1 2 .1
Let functions f e W 2and b e [W 21 be given, and let v e W2 be such that

(3.1) -Av f +div b in 0.

If a= Ox - z1 2 + ; 2 )1/2 is the weight function introduced in Section 2, then we

have the following

Lemma . For any convex polygonal domain Q, there exists an ci R (0,1] such that

for all parameter values ai e (0,ci0 the following a priori estimates hold,

Mi if f 0:

(3.2) f(2+ci, 2IVvI 2 dx < c Ja 2+ci Idiv b 2 dx + c-C 2 f , 2+aiIbj 2dx

(ii) if b -0:

(3.3) f a-2aIVv2d < cJ1 l-2 *f a2cVf,2 dx

Proof. Wi To prove (3.2), we estimate

f 2+ I V 2 dx < f 1V2 [ oa/ vil dx + c f {ol"VvI 2+ a a2v 2ldx

Since Q is convex, we have the standard L 2  a priori estimate

1 
2

11w 11 2, 2 11IItw 112 we W 2 r)W2

Applying this to a 1a2v, we find by a simple calculation that



(3.4) fa 2+a V 12 dx < c f 02+a div b 2 dx + c f {C'IVvI 2 + A 2V2 }dx

Furthermore,

oj I vvl = f vvV(aIv)dx + f Aav%2dx

and hence, using (3.1),

CIv12 J 2+oL 2 a-2 v2
(3.5) f oVvvdx < c f a 2 div bj dx + c £ a v2dx

Combining (3.5) with (3.4), we arrive at

(3.6) f 2+a IV2 vI2dx < c f o2+a div b 2dx + c f a a-2v2dx.

Next, we apply H61der's inequality to obtain

(3.7) f Ga-2v2dx < (< a-2-adx) (2-0)/(2+() lv 12
-- (2+cL)/a.

<C(a- 1 - a ) (2-a) /(2+a.) 1 1
_< Ilvll(2+c0/a(

*1 2
We have already noted that the Laplacian is a homeomorphism from W q W onto Lq q q

for all q e (1,21. Hence, there is a w 1W I W 2 satisfying
(2+ot)/2 (2+a)/2

-Aw = sgn(v) Iv12 /a in Q

and

(3.8) 11w.,,l1 , (2+.)/2 <  c 11 w 1 (2+ a0 /2 "

Then, we have via H671der's inequality, Sobolev's inequality, and (3.8) that

iI (2+c)/o (Vv Vw) =( w b1
(2+)/ =  , (b,Vw) < Ijbl (4+2co)/(2+3o) Iw1l, (4+2c,)/(2-.)

< jlwj< lj jj11' I 2/a,
cI (4+2 )/(2+3a) 1w 2,(2+a)/2 -< cibli (4+2oL)/(2+3, lv (2+a)/

Thus, we obtain

(3.9) lJc(2+)/a - clibli (4+2a)/(2+3a)

Now, again by H6"der's inequality,

( (4+22)/(2+3 -

<3cc -(4+a 2 )/(4+2Ci) (f 0 2+a ibI 2xl) 1/ 2

-9-



Combining the estimates (3.10)-(3.7), we obtain that for a e (0,11

(3.11) f aJ- 2 v 2 d x < c-I -2 f 2 +Ibi 2 dx .

This together with (3.6) proves the estimate (3.2) for the choice a - 1.

(ii) To prove (3.3), we apply H6der's inequality as follows:

(3.12) f 0- 2- aj 2l <_( (2+a)/dx)a 11VvrI 2

< a-21v12
_< Iv12,2/(1_m)

Above, we have noted that the Laplacian is a homeomorphism from W 1 W2
W2/Cl-a) ' 2/Cl-a)

onto L2/(I1a) for a e (0,a], where 1 > aa > 0 is determined by the maximum

inner angle of S1. Thus, for a e (O, 1, we have that

(3.13) llvli2, 2/(l. ) - ciiAviI2/(la)

By Sobolev's inequality combined with Poincare's inequality (notice that Av e W2),
2

(3.14) IAvII 2/(lo ) _ cIlvAvII2 /(2_,)

We apply again H6lder's inequality to obtain

(3.15) < cl-1/2 -a/2 (f ,2-(xl,7Av,12dx /2

Combining the estimates (3.15) - (3.12), we finally reach the desired estimate

f a-2-aIV vd < ca-l-2 f o2-af~vifx.

valid for a e (O,a 3. q.e.d.

-10-
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